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Abstract

How do people reason from data to choose actions in novel situations? There
is considerable flexibility in the language we can adopt to describe such acts
of cognition, and different fields of cognitive science have used different lev-
els of description to characterize subsets of cognitive phenomena. Recent
developments in these fields have highlighted tensions between process-level
descriptions from cognitive psychology and computational-level descriptions
from computer science and machine learning: How can rational probabilistic
inference be carried out in the human mind given its processing limitations?
In my dissertation I argue that this tension can be resolved by explain-
ing cognition and decision-making as sample-based approximate inference:
instead of considering complete probability distributions, people entertain
only a few hypotheses randomly considered with frequency proportional to
their probability. I show in several cognitive and visual tasks that human
perception and decisions follow the predictions of a sample-based approxi-
mate inference engine. Moreover, models of cognition based on specific sam-
pling algorithms can describe previously elusive cognitive phenomena such
as perceptual bistability and probability matching. Altogether, the sampling
hypothesis unites the probabilistic modeling approaches from computer sci-
ence with processing constraints from cognitive psychology and connects to
several recently proposed neural implementations of complex reasoning.

A unified account of human cognition will yield understanding at least at three levels
(Marr, 1982): Computation – what information is used to solve a problem and how is this
information combined? Process – how is information represented and what procedures are
used to combine the representations? Implementation – how are these representations and
procedures implemented in the brain?

Subfields of cognitive science typically focus on a single level without considering con-
nections to the others. Recent developments in computer science and artificial intelligence
have produced impressive models for drawing sophisticated inferences from the sparse in-
formation available to humans, without considering how these computations can be carried
out by the human brain. Cognitive psychologists, have characterized the failures of hu-
man cognition and defined the boundaries our processing capacities, without considering
the computational goals of the algorithms or their neural constraints. Neuroscientists have
probed in increasingly fine detail the implementation level – the physical hardware under-
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lying cognition – without considering the processes and computations that the hardware
has evolved to carry out. These fields have made tremendous progress without exploring
interdisciplinary connections to bridge levels; however, recently progress has been hampered
by the absence of interdisciplinary, cross-level research to connect the levels.

My dissertation takes on one such interdisciplinary challenge: connecting computa-
tional, probabilistic analyses of human cognition with the processing constraints known
from cognitive psychology. I suggest that the seemingly intractable computational prob-
lems proposed by rational statistical analyses of cognition from computer science can be
realistically approximated given processing constraints from cognitive psychology via sam-
pling approximations. Testing this interdisciplinary theory requires methods from different
subfields of cognitive science, so I have approached the problem from three angles: (1)
Psychophysical experiments in visual perception (ch. 3-4), (2) Behavioral experiments on
high level cognition (ch. 5), and (3) defining formal models of the connection between com-
putation and process (ch. 2). The work in this dissertation paves the way for a Bayesian
cognitive architecture, which synthesizes processing constraints from cognitive psychology
with probabilistic computational considerations (Ch. 7).

The challenge

Bayesian inference and decision theory describe theoretically optimal computations
for combining different sources of uncertain information to build structured models of the
world and for using these models to plan actions and make decisions in novel situations. In
recent years, this framework has become a popular and successful tool for describing the
computations people must carry out to accomplish perceptual (Knill & Richards, 1996),
motor (Maloney, Trommershauser, & Landy, 2007), memory (Anderson & Milson, 1989),
and cognitive (Chater & Manning, 2006; McKenzie, 1994; Griffiths & Tenenbaum, 2005;
Goodman, Tenenbaum, Feldman, & Griffiths, 2008) tasks both in the lab and in the real
world; thus supporting the claim the Bayesian inference provides a promising description
of rational models (Anderson, 1990) of cognition at the computational level. However,
as Bayesian rational analysis gains ground as a computational description, several salient
challenges have hampered progress, indicating that important constraints at the process
level must be taken into account to accurately describe human cognition.

Challenges to a purely computational view

First, exact Bayesian calculations are practically (and often theoretically) impossible
because computing the exact Bayesian answer frequently requires evaluating and integrating
innumerably large hypothesis spaces. This is true of even small-scale inferences in artificial
problems (for instance – possible sentence parses in a probabilistic context-free grammar
(Charniak, 1995)). Thus, applications of Bayesian inference in machine learning have relied
on approximate inference methods. Since exact Bayesian inference is usually intractable
even for small artificial problems, the problem must be even more severe for the large-scale
real-world problems that the human mind faces every day. How can the brain do Bayesian
inference at a real-world scale?

Second, cognitive processing limitations pose an additional practical challenge to im-
plementing approximate statistical inference in humans. Human cognition is limited in
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memory (Wixted & Ebbesen, 1991; Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008), pro-
cessing speed (Shepard & Metzler, 1971; Welford, 1952), and attention (Pashler, 1984;
Broadbent, 1958; Treisman & Gelade, 1980; James, 1890), while people must make split-
second decisions. Adequate approximations of Bayesian inference rely on millions of complex
calculations (Robert & Casella, 2004). What procedures can people use to approximate sta-
tistical inferences in real-world decisions within a fraction of a second, despite their limited
cognitive resources?

Third, although people seem to be Bayesian in many cognitive domains on the average
over many trials or subjects, individuals on individual trials are often not optimal. Goodman
et al. (2008) showed that optimal average Bayesian rule-learning behavior emerges from
aggregating over many subjects, each of whom learns just one rule. Similarly, Griffiths
and Tenenbaum (2006) demonstrated that on average, people know the distribution of
quantities of the world, but individual responses reflect knowledge of only a small subset
(Mozer, Pashler, & Homaei, 2008). These results suggest that average behavior reflects
optimal actions that take into account complete probability distributions, while individual
behavior does not reflect such fully probabilistic beliefs. What cognitive processes could
produce optimal behavior on the average of many suboptimal trials?

Fourth, the characteristic dynamics of cognition have historically intrigued cognitive
psychologists and highlighted the need for a process-level description: People forget what
they have learned (Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006), they overweight initial
training (Deese & Kaufman, 1957), they solve problems (Vul & Pashler, 2007) and rotate
mental images (Shepard & Metzler, 1971) slowly, and they stochastically switch between
interpretations when exposed to ambiguous stimuli (Alais & Blake, 2005). Such dynamics
of human cognition are outside the scope of purely computational analysis, and require a
process-level description.

The sampling hypothesis

In my dissertation, I suggest a resolution to all of these challenges: The mind approx-
imates Bayesian inference by sampling.

Sampling algorithms represent probabilistic beliefs by considering small sets of hy-
potheses randomly selected with frequency proportional to their probability. Sampling can
approximate probability distributions over large hypothesis spaces despite limited resources.
Sampling predicts optimal behavior on average and deviations from optimality on individual
decisions. Specific sampling algorithms have characteristic dynamics that may help explain
the dynamics of human cognition. Altogether, sampling algorithms are formal process-level
descriptions of Bayesian inference that could bridge the gap between ideal-observer analyses
from machine learning and known resource constraints from cognitive psychology.

To elucidate the sampling hypothesis, it should be contrasted with two alternate
theories of representations: Boolean point estimates and probability distributions.

Boolean-valued point estimates

Classical accounts of neural and psychological representation assume that beliefs are
noisy, Boolean-valued point-estimates. Boolean-valued belief representations contain single
estimates of a belief: In choices from multiple discrete options, one or more options may be
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deemed true, and the others false. An object either belongs to a category, or it does not.
A signal has either passed threshold, or it has not. In choices along continuously valued
dimensions (e.g., brightness), all-or-none representations take the form of point-estimates
(e.g., 11.3 Trolands). Although the content of a point-estimate is continuous (11.3), its truth
value is Boolean. Such Boolean accounts of mental representation have been postulated for
signal detection (point estimates corrupted by noise; e.g., Green & Swets, 1966), memory
(memory traces as point estimates; e.g., Kinchla & Smyzer, 1967), concepts and knowledge
(as logical rules and Boolean valued propositions; e.g., Bruner, Goodnow, & Austin, 1956).

However, to produce behavior consistent with ideal Bayesian observers, as they have
been shown to do in signal detection (Whitely & Sahani, 2008), memory (Steyvers, Grif-
fiths, & Dennis, 2006), categorization (Tenenbaum, 1999), and knowledge (Shafto, Kemp,
Bonawitz, Coley, & Tenenbaum, 2008), people must represent uncertainty about their be-
liefs. They must know how much they believe different uncertain alternatives. Unfor-
tunately, Boolean-valued belief representations fail to represent uncertainty, and as such,
cannot support the Bayesian probabilistic computations that describe human behavior in
these same domains.

Full probability distributions

A strictly computational account of Bayesian cognition would suggest that cogni-
tion represents exact probability distributions. A probability distribution may be exactly
represented in two ways. First, analytically: as a mathematical function that codifies the
probability of any possible hypothesis. It seems cognitively and neurally implausible for
mental representations to be, literally, mathematical functions. Second, probability dis-
tributions may be represented as fully enumerated weighted lists: a paired list of every
hypothesis along with its associated probability (e.g., probabilistic population codes; Ma,
Beck, Latham, & Pouget, 2006). While weighted lists may be plausible representations
for cases with fairly simple inferences, they break down in large-scale combinatoric prob-
lems, where the number of hypotheses grows exponentially to potentially infinite length. In
these cases, a weighted list would need to be impossibly, or at least implausibly, long given
constraints on human cognition.

Sample-based representations

Since, neither Boolean representations nor full probability distributions seem ade-
quate, I propose sampling as an alternative representation. According to this sampling
hypothesis, people represent probability distributions as sample-generating procedures, and
as sets of samples that have been generated from these procedures. Inference by sampling
rests on the ability to draw samples from an otherwise intractable probability distribution:
to arrive at a set of hypotheses which are distributed according to the target distribution.
Of course, producing exact samples that are distributed according to the correct probability
distribution is hard in itself; thus, a number of algorithm have been developed for solving
precisely this problem, for instance, Markov chain Monte Carlo; Robert & Casella, 2004; or
particle filtering; Doucet, De Freitas, & Gordon, 2001. Samples may then be used to ap-
proximate expectations and predictions with respect to the target probability distribution,
and as the number of samples grows these approximations approach the exact distribu-
tions of interest. As a physical example, consider the “plinko” machine (Figure ??, Galton,
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1889) – this device represents a Gaussian distribution in so far as additional balls dropped
in can generate additional (approximately) Gaussian samples. Representations via sam-
ples and sample-generating procedures can represent uncertainty as the variation of the set
of samples (in contrast to single point-estimates). Moreover, in contrast to weighted lists,
sample-based representations may be truncated at a short, finite length without introducing
systematic error.

Theoretical considerations

Sampling is commonly used in engineering to approximate inference for the same rea-
sons that make sampling an appealing process-model for cognitive science. First, sampling
algorithms are applicable to most inference problems used across cognitive domains. Sec-
ond, sampling algorithms can plausibly implement real-world reasoning because they scale
efficiently to high-dimensional problems. Third, sampling is a “just-in-time” algorithm that
smoothly trades off precision, speed and computational load; thus sampling algorithms can
be used when time or cognitive resources are limited, while also allowing precise inferences
when resources allow.

In Chapter 2, I capitalize on the graceful degradation of sampling with limited cog-
nitive resources to explore the meta-cognitive question: how many samples should people
use to make a decision? In Bayesian statistics and machine learning, accurate inference
requires thousands of samples, each of which is effortful to produce. But how many samples
are necessary to make a sufficiently accurate decisions? Surprisingly, across a large range
of tasks, using few samples often yields decisions that are not much worse than those based
on more precise inferences (Vul, Goodman, Griffiths, & Tenenbaum, 2009). Moreover, on
the assumption that sampling is effortful and takes time, I found that using just one sample
for decisions often maximizes expected reward: making quick, suboptimal decisions is often
the globally optimal policy.

Relationship between sampling and classical theories

Not only is the sampling hypothesis is a novel process-level description that connects
computational Bayesian models to processing constraints from cognitive psychology, but it
is also closely related to several classical laws and theories of cognition.

Probability matching, Luce choice, and soft-max decisions

Probability matching (Herrnstein, 1961; Vulkan, 2000) refers to the characteristic be-
havior of people and animals when faced with a risky choice among several alternatives.
In a typical probability matching experiment, an observer is faced with a choice between
two options, one rewarded with probability p, the other with probability 1-p. The optimal
choice is to maximize and always choose the option with the greater probability of reward;
however, instead, people choose the two alternatives with frequency proportional to the
probability of reward; thus matching the reward probability. Luce (1959) generalized the
matching rule to describe the gamut of responses that people make between probability
matching and maximizing. Although people do not always strictly match probabilities, de-
viations from probability matching follow a law-like regularity, where responses are chosen
according to an exponentiated probability matching law – when the exponent is 1, people
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match probabilities, and as the exponent increases, people are closer and closer to maximiz-
ing. The Luce choice rule also generalizes beyond probabilities based on previous rewards,
to probabilities derived from any set of beliefs or representations. For this reason, the Luce
choice rule has been applied as the function linking optimal probabilistic models of cog-
nition to suboptimal human behavior, via a “soft-max” decision rule Frank, Goodman, &
Tenenbaum, 2009; Goodman et al., 2008.

The sampling hypothesis naturally captures this gamut of decision-making behaviors.
Probability matching can be described as sampling from prior experience: randomly select-
ing previously experienced outcomes and choosing the option that was rewarded most often
in the set of sampled outcomes. When only one previous trial is considered, this proce-
dure yields probability matching, and if more trials are considered then behavior will vary
between probability matching and maximizing. When more than one trial is considered,
decisions deviate from probability matching, and follow the general Luce choice/soft-max
decision rule. Moreover, the sampling hypothesis is not restricted to sampling directly pre-
viously experienced outcomes: hypotheses may be sampled not only from direct experience
but also from internal beliefs inferred indirectly from observed data. The sampling hy-
pothesis thus allows provides an explanation for the general use of a soft-max decision rule
connecting probabilistic models to human behavior.

Point-estimates, noise, and drift-diffusion models

Point-estimate based representations explain variation across trials and individuals
as point-estimates corrupted by noise. Because the structure of the noise defines a prob-
ability distribution over possible states, the variation in responses across trials predicted
by sampling and predicted by the noise accounts align under these special circumstances.
Crucially, however, as I will describe below, predictions of these two accounts diverge when
considering the relationship between the errors contained in different guesses.

A specific case of the noisy point-estimate account – the drift-diffusion model used to
describe decision-making over time in cognitive psychology and neuroscience (Ratcliff, 1978;
Gold & Shadlen, 2000) – allows for quantitative assessment of speed-accuracy tradeoffs on
the tacit assumption that people aggregate noisy samples of input data until they reach
some decision criterion. These cases may be construed as obtaining “samples” from the
external world when used to account for perceptual decisions (Gold & Shadlen, 2000), but
when applied to cognitive decisions, such as memory retrieval (Ratcliff, 1978), the samples
must be internally generated. In cases where drift-diffusion models are applied to memory,
they are superficially isomorphic to sample-based inference about internal beliefs.

Thus, the sampling hypothesis unifies internal noise, drift diffusion models, and soft-
max probability matching behavior under one general framework that describes how people
can approximate optimal Bayesian inference in situations without direct prior experience
about the task at hand and must make decisions and inferences based solely on pure rea-
soning.

Evidence for sampling in human cognition

Theories postulating representation via point-estimates, probability distributions, or
samples, postulate different causes for response variability, and thus make different predic-
tions about the information contained in multiple guesses. If internal representations are
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noisy point-estimates, then variation across responses must arise from the accumulation of
noise on the point-estimates – thus, errors will be cumulative and correlated. If internal
representations are complete probability-distributions, then there should be no response
variation (variation in responses can only reflect variation in inputs or utility functions).
In contrast, if internal representations are sampling processes, then variation in responses
arises from the randomness of sampling – thus, multiple responses will have independent er-
ror. Crucially, this results in novel and unique predictions about the information contained
in response errors, which we can look for in human behavior.

Although sampling and point-estimate representations may predict similar distribu-
tions of errors, they differ in their predictions about the relationship between multiple
guesses. According to internal noise models, a single point-estimate is corrupted by noise,
and this noise will therefore be shared by a number of guesses based on the same point
estimate. In contrast, sampling based predict independent error between multiple guesses
based on the same stimulus information. In my dissertation I test this prediction in the
case of visual attention – a domain which facilitates precise quantitative measurements –
as well as cognitive knowledge estimation tasks.

In Chapter 3, we investigate sampling in simple visual attention tasks (Vul, Hanus,
& Kanwisher, 2009). We asked subjects to report one letter from a circular array cued by a
line, but we asked them for multiple guesses on each trial. In these circumstances, subjects
often report nearby items instead of the target, but we asked whether two guesses share
a source of spatial error. If errors in this task reflect noise corrupting the position of the
cue, then there would be a correlation in errors between the two guesses: if the first guess
contained an error clockwise from the cue, the second guess should as well. However, if
these errors arise from sampling given uncertainty about the spatial co-occurrence of cue
and target, then the errors should be independent. We confirmed the sampling hypoth-
esis prediction and found that two guesses independent and identically distributed. This
result was replicated for the case of visual selection in time, rather than space (Vul et al.,
2009). Together, these results indicate that when subjects are asked to select items under
spatiotemporal uncertainty, subjects make guesses by independently sampling alternatives
from a probability distribution over space and time.

In Chapter 4, we further tested the sampling hypothesis in “binding” tasks: subjects
had to report two features of the target letter to assess whether illusory conjunctions (Treis-
man & Schmidt, 1982), or misbinding errors, also arise from sampling under spatiotemporal
uncertainty. Vul and Rich (in press) presented subjects with arrays and RSVP streams of
colored letters and asked subjects to report both the color and the letter. Given the per-
muted arrangement of colors and letters, these two dimensions yielded two independent
estimates of the reported spatial positions. Again, the correlation between these reports
could be used to evaluate the independence of the two guesses. In this case as well, errors
were independent indicating that different features are independently sampled and that il-
lusory conjunctions and binding errors arise from spatiotemporal uncertainty rather than
noise.

In Chapter 5 we test a predicted consequence of the sampling hypothesis in high level
knowledge. If different responses from one person correspond to independent samples from
their uncertain knowledge, we should see a “wisdom of crowds” (Suroweicki, 2004) within
one individual. Galton (1907) demonstrated that averaging guesses from multiple individ-
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uals yields a more accurate answer than can be obtained from one individual alone because
the independent error across individuals averages out to yield a more accurate estimate.
If multiple guesses from one individual are independent samples, they should also contain
independent error, and then the average of multiple guesses from one individual should also
yield a similar “wisdom of crowds” benefit, where the crowd is within one individual. Vul
and Pashler (2008) tested this prediction by asking subjects to guess numerical trivia (e.g.,
what proportion of the worlds airports are in the United States?). After subjects made one
guess for each question, they were asked to provide a second guess for each. The average
of two guesses was more accurate than either guess alone, suggesting that the two guesses
contained some independent error, as predicted under the sampling hypothesis.

The above cases verify the predictions of the sampling account in cases where the
implicit computational model is not specified, but does the sampling hypothesis yield ad-
ditional predictive power in cases with a concrete computational model? Goodman et al.
(2008) investigated human decisions in a category-learning task, where subjects see several
examples of a category, and are then asked to decide whether new items belong to the cat-
egory or not. Goodman et al. (2008) found that the average frequency with which subjects
classify new items fits almost perfectly with the probabilistic predictions of a Bayesian rule-
learning model. The model considers all possible classification rules, computes a posterior
probability for each rule given the training data, and then computes the probability that
any item belongs to the category by averaging the decisions of all possible rules weighted
by their posterior probabilities. Is this fully Bayesian inference what individual subjects
do on any one trial? Not in this task. Goodman et al. (2008) analyzed the generalization
patterns of individual subjects reported by (Nosofsky, Palmeri, & McKinley, 1994) and
found that response patterns across seven test exemplars were only poorly predicted by
the Bayesian ideal. Rather than averaging over all rules, these generalization patterns were
instead consistent with each participant classifying test items using only one or a few rules;
while the particular rules considered vary across observers according to the appropriate
posterior probabilities. Thus, it seems that individual human learners are somehow draw-
ing one or a few samples from the posterior distribution over possible rules, and behavior
that is consistent with integrating over the full posterior distribution emerges only in the
average over many learners. Similar sampling-based generalization behavior has been found
in word learning (Xu & Tenenbaum, 2007) and causal learning tasks (Sobel, Tenenbaum,
& Gopnik, 2004), in both adults and children.

Specific sampling algorithms for specific tasks

Although we confirmed the predictions of sample-based inference in several cognitive
domains, the fact remains that producing a sample from the appropriate posterior distribu-
tion is not trivial. In computer science and statistics there are many algorithms available
for doing Monte Carlo inference. Simple sample-generating algorithms, like rejection sam-
pling, tend to be slow, inefficient, and computationally expensive. In practice, different
sampling algorithms are chosen for particular problems where they may be most appro-
priate. Therefore, while “sampling” may capture some cognitive phenomena at a coarse
grain, the exact sampling algorithms used may vary across domains, and may provide more
accurate descriptions of specific behavioral phenomena and the dynamics of cognition.

Most real-world domains offer only small amounts of training data which must then
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support a number of future inferences and generalizations. Shi, Griffiths, Feldman, and
Sanborn (in press) showed that in such domains, exemplar models (Medin & Shaffer, 1978)
using only a few examples can support Bayesian inference as an importance sampler (Ripley,
1987). This can be achieved using an intuitive psychological process of storing just a
small set of exemplars and evaluating the posterior distribution by weighting those samples
by their probability – a process known as “importance sampling”. Shi et al. (in press)
argued that such an importance sampler accounts for typicality effects in speech perception
(Liberman, KS, Hoffman, & Griffith, 1957), generalization gradients in category learning
(Shepard, 1987), optimal estimation in everyday predictions (Griffiths & Tenenbaum, 2006),
and reconstructive memory (Huttenlocher, Hedges, & Vevea, 2000).

Particle filtering is a candidate sampling algorithm for domains where inference must
be carried out online as data are coming in, such as sentence processing (Levy, Reali, &
Griffiths, 2009), object tracking (Vul, Frank, Alvarez, & Tenenbaum, 2010), or change-point
detection (Brown & Steyvers, 2008). Particle filters track a sampled subset of hypotheses
as they unfold over time; at each point when additional data are observed, the current
set of hypothesized states are weighted based on their consistency with the new data, and
resampled accordingly – as a consequence, this inference algorithm produces a bias against
initially implausible hypotheses. Levy et al. (2009) showed how this bias can account for
garden-path effects in sentence processing: when the start of the sentence suggests one
interpretation, but the end of the sentence disambiguates the interpretation in favor of a
less likely alternative, people are substantially slowed as they search for the correct parse.
This difficulty arises in particle filtering because of the challenge of resampling/updating
when the correct hypothesis is not within the currently entertained set of particles. Similar
arguments have been used to explain individual differences in change detection (Brown &
Steyvers, 2008), and performance while tracking objects (Vul et al., 2010), and might be
fruitfully applied to describe other classic sequential inference biases (e.g., Bruner & Potter,
1964).

In some real-world and laboratory tasks, the observer sees all the relevant data and
must make sense of it over a period of time. For instance, when looking at a 2D projection
of a wireframe cube (Necker, 1832), observers are provided with all of the relevant data at
once, but must then come up with a consistent interpretation of the data. In cases where
two equally likely interpretations of the stimulus are available, the perceived interpretation
changes stochastically over time, jumping between two modal interpretations. Sundareswara
and Schrater (2007) demonstrated that the dynamics of such rivalry in the case of a Necker
cube arises from approximate inference via Markov Chain Monte Carlo (MCMC; Robert
& Casella, 2004). Gershman, Vul, and Tenenbaum (2010) elaborated on this argument
by showing that MCMC in a coupled markov random field – like those typically used
as computational models of low-level vision – not only produces bistability and binocular
rivalry, but also produces the characteristic traveling wave dynamics of rivalry transitions
(Gershman et al., 2010; Wilson, Blake, & Lee, 2001).

Conclusion

I started with a set of challenging question for cognitive science: How can optimal
probabilistic models of human cognition be reconciled with the cognitive processing con-
straints documented in cognitive psychology? How can people approximate ideal statistical



SAMPLING IN HUMAN COGNITION 10

inference despite their limited cognitive resources? How can we account for the dynamics of
human cognition along with the associated errors and variability of human decision-making?
I proposed the sampling hypothesis as a means to reconcile theories and data from different
cognitive science disciplines: Instead of representing complete probability distributions, or
single point-estimates, people represent their beliefs as sample-generating processes. The
unique predictions of the sampling hypothesis are confirmed across several visual and cogni-
tive tasks. Moreover, sampling-based approximate inference algorithms provide an account
of the process-level dynamics of human cognition as well as variation in responses. Alto-
gether, the sampling hypothesis provides a necessary link between computational models of
cognition from computer science and process-level limitations from cognitive psychology.
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