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Humans function efficiently despite being error-prone, because they can monitor their behavior, detect 

errors and apply corrections online. Sophisticated cognitive models of action monitoring have been 

proposed as the result of studying error detection and post-detection correction (e.g. Botvinick, Braver, 

Carter, Barch, & Cohen, 2001). However, the data for these models come from laboratory tasks with a 

limited number of pre-determined button-push responses, and little effort has been made to generalize 

these mechanisms to natural cognitive tasks such as speaking. Moreover, cognitive monitoring has made 

little contact with monitoring motor movements. 

This lack of communication has serious drawbacks. A good example is that the most widely accepted 

theory of monitoring in speech production (the perceptual loop; Levelt, 1983, 1989) is purely perceptual, 

which makes it fundamentally different from models of monitoring based on forced-choice cognitive 

tasks or models proposed in motor control (e.g. forward models). This is cause for concern, since the 

evidence strongly points to commonalities between monitoring in different systems. For one thing, 

behavioral studies have demonstrated that the timeline of detection and correction is incompatible with 

monitoring through external perceptual systems for both limb movements and language production. 

Moreover, event-related brain potential (ERP) studies have discovered a waveform that appears to be 

correlated with the detection of performance errors; this component is similar regardless of the system 

committing the error (e.g., motor movement, visual processing, language production), and also 

independent of the modality that commits the error (button-push, eye-movement, verbal). These domain-

general effects require a domain-general theory of monitoring.  

This dissertation was motivated primarily by the fact that the current theory of speech monitoring fails to 

explain important facts about error detection. The research presented here argues that although the 

evidence against the model comes from the domain of language, the model’s failure is a domain-general 

problem. It further shows how implementing a simple, but crucial, principle borrowed from models of 

action monitoring can solve the problem. Specifically, instead of relying mainly on perception for error 

detection, the newly-proposed model uses the information generated by the production system (as do the 

forward models of limb movement monitoring). A specific form of a non-perceptual monitor (Conflict 

Detector, Botvinick et al., 2001) is selected among the cognitive models of forced-choice error detection, 

because of the support it receives from the neurophysiological studies (ERP) and the similarities of those 
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findings in linguistic and non-linguistic tasks. The new theory of conflict-based error detection in speech 

production is then tested computationally, in a well-established connectionist model of word production 

(Dell & O’Seaghdha, 1991). Once the model’s predictions about error detection in normal speakers are 

verified, the model is further tested on the data obtained from a group of chronic aphasic patients with left 

hemisphere damage due to stroke. The resulting model is the first model of speech monitoring that 

explains error detection behavior in both healthy speakers and brain-damaged patients, and is at the same 

time, compatible with the evidence of domain-general monitoring. More generally, this research is a 

successful example of developing a new theory, by integrating information from multiple domains of 

neuropsychology, neurophysiology, cognitive and motor control, and computational modeling. 

The dissertation has 5 sections. First the current theory of speech monitoring (the perceptual-loop model) 

is reviewed, along with its shortcomings. Next a model of error detection in forced-choice tasks is 

discussed, in which detection of errors is carried out by monitoring the amount of conflict between 

response alternatives. Third, a formal of model of error detection in language production is proposed, 

which uses conflict detection, but tailors it to the properties of the language production system. This 

section contains two computational simulations testing the principles of the model. Fourth, a coding 

scheme is developed for coding natural error detection in aphasic patients, by using transcriptions of the 

responses of 63 patients in a picture naming task. The data of 29 of those patients’ –who matched the 

inclusion criteria– are then analyzed to test the model’s predictions derived from the computational 

simulations. In the final section, the main properties of monitoring models in different fields are 

discussed. It is then argued that although the new conflict-based model has module-specific features that 

make it suitable for detecting errors in language production, it shares the core features of the models 

created for other systems, and is thus compatible with the evidence of domain-general monitoring. In this 

précis, I follow the same organization, and provide a brief summary of each section, leaving out the 

details that can be consulted in the main body of the dissertation attached. 

Monitoring in language production 

Detecting errors in another person’s speech, by default, requires listening, comprehending and analyzing 

their speech for discrepancies or unexpected utterances (e.g. upon hearing “I read a dog” the semantic 

incongruence of the sentence raises the possibility that the speaker has committed an error). It is tempting 

to extrapolate this mechanism to monitoring one’s own speech, and claim that speakers listen to their own 

utterance and analyze its content for discrepancies with the intended message. Only, they do not have to 

wait for the utterance to become overt, since they have access to the constructed utterance in the form of 

“inner speech” (i.e. speech before it is articulated). According to this view, monitoring one’s own speech 
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is carried out by the comprehension system via two routes, an internal channel, which monitors speech 

before it is spoken and an external channel which monitors speech after it is spoken, pretty much in the 

same manner as it does others’ speech. This model, called the perceptual loop (Levelt, 1983, 1989) has 

been the dominant model of monitoring speech production for nearly 30 years. In spite of its success in 

explaining many aspects of error detection, the model faces a big challenge: There are several reports of 

aphasic patients with near-perfect comprehension who fail to detect their own –but not others’– speech 

errors (e.g. J. Marshall et al., 1998) as well as patients who do detect their speech errors in spite of 

impaired comprehension (e.g. R. Marshall, Rappaport and Garcia-Bunuel, 1985). This double-

dissociation between comprehension and error detection is a serious problem for a comprehension-based 

model of error detection.  

An alternative would be a model that instead of relying on comprehension for error detection would rely 

on the production system itself. Examples of such production-based monitoring models have been 

proposed, but were either never implemented (e.g. De Smedt & Kempen, 1987; Laver, 1980; Postma & 

Kolk, 1993) or their implementation has been unsuccessful in accounting for some of the fundamental 

empirical data (e.g. MacKay’s Node Structure Theory, 1987, 1992), and have thus failed to supplant the 

perceptual loop model.  

Conflict model of error detection in forced-choice tasks 

Dissociation of comprehension from error detection also has support in the ERP data. The neural 

signature of error commission is a negativity with frontocentral distribution, called the Error Related 

Negativity (ERN; e.g. Gehring, Goss, Coles, Meyer, & Donchin, 1993). Crucially, the emergence of 

the ERN has been shown to be independent of conscious awareness of the error, meaning that ERNs were 

detected after both errors that participants reported and the ones that they did not (Nieuwenhuis, 

Ridderinkhof, Blow, Band, & Kok, 2001). In addition, the ERN originated from the same brain region 

(Anterior Cingulate Cortex or the ACC) regardless of the system in which the error was committed 

(motor, language, visual), and also regardless of the response modality (hands vs feet; e.g. Holroyd, Dien, 

& Coles, 1998). These findings suggest that commission of an error in a system sends a signal to a central 

brain region (most likely the ACC), which generates a domain-general error signal (the ERN), regardless 

of the system from which the error has originated. 

An example of such a monitoring mechanism was proposed by Botvinick et al. (2001), for forced-choice 

button-push tasks. According to their theory, the conflict between the activation of response alternatives is 

monitored by the ACC, and larger values of conflict are associated with higher error probabilities. Hence, 

detection of an error is blind to the actual “correct” response, and does not require comprehension of the 
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executed response, but instead relies on the amount of computed conflict over a number of response 

alternatives. 

The Conflict-based model of error detection in language production 

The conflict-based model described by Botvinick et al. (2001) has all the right properties for a 

production-based model of error detection in language production. As noted above, the model acts 

independently of comprehension and relies on the conflict of activation of more than one response. Dell 

and O’Seaghdha’s (1991; See Figure 1 in the dissertation) word production model provides a good 

scaffold for implementing such a conflict-based monitor. The model has three layers (semantics, lexical 

nodes and phonemes) and names an object in two steps. In the first step, the semantic features of the 

object become activated, the activation spreads throughout the network and the most highly activated 

node in the lexical layer is selected (selection point 1). In the second step, the selected node receives a jolt 

of activation and, after spreading the activation throughout the network, the most highly activated nodes 

are selected at the phoneme layer (selection point 2). 

An advantage of the model is that it has been successfully used to model aphasic language production 

(e.g. Nozari, Kittredge, Dell, & Schwartz, 2010), by lesioning the weights of the connections between the 

three layers. Specifically, the weight of the connections between the semantic and lexical nodes (s-

weight)  determines the probability of making a semantic error (e.g. “dog” instead of the target “cat”) and 

the weight of the connections between the lexical and the phonological nodes (p-weight) determines the 

probability of a nonword error (e.g. “zat” for “cat”). Therefore, given the response pattern of each patient 

on a picture naming task (i.e. the proportions of various kinds of errors), the model assigns unique s and p 

values to them. This is important because the ultimate test of the conflict-based model of monitoring has 

to come from the aphasic patients, who may or may not show a dissociation between comprehension and 

error detection abilities. Dell and O’Seaghdha’s model provides a way to quantify production ability, 

which can then be objectively compared with comprehension scores for predicting patient’s error 

detection abilities. 

Although the idea of conflict detection was borrowed from Botvinick et al. (2001), the implemented 

model differs from theirs in important ways, and cannot be viewed as a simple implementation of that 

model in language production. For one thing, detection of conflict is tied to the selection points (see 

above), such that conflict detection is viewed not as an extra mechanism useful only for error detection, 

but an integral part of the process of selection for production. Thus, conflict is measured once at the level 

of lexical and once at the level of phonological nodes at the points of selection. 
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Moreover, the measure of conflict is also changed to reflect this theoretical choice. Instead of Hopfield 

energy (which requires tracking changes of the conflict measure throughout each trial), two new measures 

are used: standard deviation of the activation of all response alternatives (to reflect competition from ALL 

responses) and the difference between the two most highly activated nodes (to denote competition from 

the strongest competitor). Both measures yielded a similar pattern, but the latter produced stronger signals 

and is thus a better predictor of the occurrence of an error. 

Successful detection by conflict in the model requires that three principles hold: 

(1) Detection sensitivity. The amount of conflict must be predictive of the probability of error occurrence.  

(2) Layer specificity. Conflict at each layer of the system should specifically predict the error type arising 

from that step. Therefore, conflict at selection point 1 (lexical layer) must be predictive of the occurrence 

of semantic errors and conflict at selection point 2 (phonological layer) must be predictive of the 

occurrence of nonword errors. 

(3) Integrity contingency. The main objection to the comprehension-based monitor was that monitoring 

failure did not always parallel failure of comprehension. Generally, a monitor is expected to fail when the 

system underlying its operation is severely impaired. The principle of integrity contingency predicts that, 

regardless of the status of the comprehension system, when the production system is broken down, 

monitoring must also be impaired. 

The first two principles were tested using computational simulations of a normal speaker. In addition, I 

showed that the model achieves hit rates comparable to the values reported in the literature for error 

detection in everyday speech, with a reasonable false alarm rate. In the published version of this 

dissertation, my co-authors and I augmented the model with a precise theory of how the model learns to 

set its conflict criterion level for detecting an error (Nozari, Dell, & Schwartz, 2011). In order to verify 

the third principle –and recheck the first two- I simulated five aphasic patients with varying degrees of 

impairment in the s and p weights (Table 1 in the dissertation), and showed that the conflict-based model 

predicted a correlation between the strength of the s and p weights and the efficiency of error detection for 

semantic and nonword errors respectively. I also verified that if the production weights are too low (i.e. 

extensive damage to the production system) the arbitrariness of the conflict signal limits its usefulness for 

error detection, and in such cases monitoring fails.  

In summary, the simulations showed that monitoring conflict at the layers of the production system is a 

good predictor of error occurrence. Similar to the other conflict-based models, the conflict signal can then 
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be sent to the error detection center (e.g. the ACC) to produce the ERN observed at the time of error 

commission. Next section tests the predictions of the model using real-life data. 

 Error detection in a sample of aphasic patients 

Aphasic patients provide a better test for the model than healthy speakers, because (1) they make many 

errors even when naming pictures of individual objects, and (2) they commit varying numbers of both 

types of errors (semantic and nonword errors) necessary to test the model’s layer specificity principle, 

while healthy speakers rarely make nonword errors. In short, patients vary a great deal in their production 

abilities and disabilities, thus providing variance on the key independent variables. The model makes a 

specific prediction: conflict at the lexical layer should be predictive of the occurrence of semantic errors, 

and conflict at the phonological layer should predict the occurrence of nonword errors. Since the amount 

of conflict at the lexical and phonological layers is correlated with the strength of the s and p weights 

respectively, the theory predicts a correlation between the strength of the s weights and detection of 

semantic errors, and the strength of the p weights and detection of phonological errors.  

The first step was to develop guidelines for coding error detection to be applied across patients. 

Transcripts from 63 aphasic patients’ picture naming attempts were used to develop a coding scheme, 

which can be found as an attachment to the dissertation. To my knowledge, this coding scheme is the first 

extensive and demonstrably reliable coding scheme for aphasic error detection. Once this scheme was 

refined to the degree that each response could be coded unambiguously by two independent coders, the 

data from twenty-nine of the 63 patients, who passed the inclusion/exclusion criteria, were coded using its 

final version. The key model-derived predictions were then tested. As predicted, detection of semantic 

errors correlated significantly with the strength of the s weights (r = .59, p = .001), and the detection of 

phonological (nonword) errors with the strength of the p weights (r = .43, p = .02). Importantly, I found 

little evidence of correlation between error detection and measures of comprehension using four standard 

comprehension tests. These tests were chosen to reflect comprehension at the different levels of the 

system: comprehension at the semantic level was measured using Pyramids & Palm Trees, 

comprehension at the lexical level was measured using the Synonym Judgment-Noun and PPVT-III tests, 

and finally comprehension at the phonological level was assessed using the Phoneme Discrimination task. 

The correlation between detecting semantic and phonological errors and none of these test scores 

exceeded 0.24. I checked these results using a hierarchical mixed model with random effects, which drew 

similar conclusions; production weights were predictive of error detection in a layer-specific fashion (s-

weights predicting semantic error detection; p-weights predicting nonword error detection), while 

comprehension scores were not.  
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Next I showed the double dissociation between comprehension and error detection, and the association 

between each production weight and detection of a specific error type at the level of individual patients, 

by analyzing in detail four individual patients who had a sufficient number of errors to allow for 

consideration of them as case studies. In all of these patients, error detection performance was unexpected 

(too high, or too low) for their comprehension scores, but was well predicted by the strength of their 

production weights, as the conflict-based model would predict. 

Domain-general principles of monitoring for error detection 

Errors in a cognitive, perceptual, or motor system reflect specific properties of that system. For example, 

the architecture of the language production system predicts semantic and phonological errors, while an 

equivalent may not be found in, say, arm movements. In this sense, monitors are domain-specific to the 

degree that their implementation depends on the properties of the system being monitored. However, this 

domain-specificity should not be taken too far. A fundamental principle of monitoring is that perceptual 

processes cannot be the primary mechanism of monitoring (see behavioral and neurophysiological 

evidence mentioned earlier). This principle is implemented in both forwards models and the conflict-

based models, which instead use the information within the error-generating system to monitor the same 

system. This means that there is no standard of correctness provided by an external module to be 

compared to the output of the system under monitoring, but the comparison takes places between two or 

more alternatives that are activated by the production system, even though the details of the comparison 

processes differ. 

The perceptual loop model of monitoring in language production does not operate according to this 

principle, and the model’s failure in accounting for the dissociation between error detection and 

comprehension is a reflection of this. Therefore, a natural first step in developing the new model was to 

ensure its compliance with this domain-general principle. The model was then detailed to reflect specific 

properties of the language production system. The resulting conflict-based model of speech error 

detection is the first to explain error detection performance where the old theory fails, and at the same 

time, be compatible with a variety of findings from the behavioral and ERP literature in linguistic and 

non-linguistic error detection tasks.  
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