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Introduction

Language acquisition is a ubiquitous, challenging problem involving fundamental cognitive abilities of atten-
tion, learning, and memory. From infants to adult travelers, language learners are faced with figuring out
which words refer to which referents from situations that contain many words and referents. By remembering
the words and referents (e.g., objects) that co-occur most frequently over time, learners may acquire correct
noun meanings—an idea known as cross-situational learning (Gleitman, ). However, given that in most
situations there are many possible word-object pairings but time and attention are limited, learners likely
use strategies to restrict the number of meanings they consider. Building on associative learning research on
attention (e.g., Kruschke, ), my thesis models noun acquisition using a simple learning mechanism with
biases. I present and model a number of word-learning experiments that investigate both theorized learning
constraints (e.g., mutual exclusivity: the assumption that each word maps to one object, and vice-versa)
and factors such as word frequency, contextual diversity, and active learning, all of which occur naturally.
Besides being of interest to psychologists and linguists, the word-object mapping problem is related to ma-
chine translation (language-language mappings) in computer science, and more generally to inference from
contingency tables (for an overview, see Agresti, ). Models of word learning beg application in education,
where they may be used to predict optimal training sequences and even identify individual differences in
terms of underlying psychological abilities.

In adult cross-situational learning studies (e.g., Yu & Smith, ; Kachergis, Yu, & Shiffrin, ,

; Suanda & Namy, ), participants are asked to learn the referent of novel words by watching a
series of training trials. On each trial learners see an array of unfamiliar objects (e.g., four sculptures)
and hear pseudowords (e.g., stigson, bosa). The referent of each pseudoword is ambiguous on a given trial,
because although each word refers to a single onscreen object, the intended referent is not indicated. In
a typical learning scenario, participants attempt to learn 18 word-object pairings from 27 trials, with four
words and four objects given per trial. In this design, each word-referent pair is presented six times over
the five-minute training period. Learning a correct word-object pairing requires accumulating word-object
co-occurrences in some fashion. Cross-situational learning has also been observed in infants (Smith & Yu,

; Vouloumanos & Werker, ) and toddlers (Akhtar & Montague, ). Research shows that even
simple cross-situational learning models can learn large lexicons in a reasonable amount of time, both in
simulated corpora (Blythe, Smith, & Smith, ) and from a corpus of parent-child interactions (Frank,
Goodman, & Tenenbaum, ).

How might people accomplish cross-situational learning? One approach views word learning as a problem
of induction with an enormous hypothesis space, and proposes a number of language-specific constraints to
restrict the space (Markman, ). In this view, infants generate hypotheses that are consistent with this set
of constraints and principles. For example, the global principle (or bias) of mutual exclusivity (ME) assumes
that every object has only one name (Markman & Wachtel, ). At a lower level, Clark ( ) proposed
the fill-the-lexical gap bias, which causes children to want to find a name for an object with no known name,



a theory advanced by Merriman and Bowman ( ). When given a set of familiar and unfamiliar objects,
it has been shown that 28-month-olds assume that a new label maps to an unfamiliar object (e.g., Mervis &
Bertrand, ). Similarly, the principle of contrast states that an infant given a new word will seek to attach
it to an unlabeled object (Clark, ). Fill-the-gap, ME, and contrast make many of the same predictions
made by the more general novel name-nameless category principle (N3C), which states that novel labels
map to novel objects (Golinkoff, Mervis, & Hirsh-Pasek, ). In order to be of aid to infant learners, such
principles are thought to be either innate or developed very early in life (Markman, ).

From another view, domain-general mechanisms like those involved in associative learning are looked to
before positing language-specific constraints (Smith, ; Kachergis, ). Associative learning paradigms
typically present one or more perceptual cues (e.g., objects, sounds), learners make a response (e.g., a button
press), and feedback is given (e.g., food, a shock). Language acquisition seems likely to be subject to the
same memory, attention, and learning mechanisms that are used to explain associative learning behavior.
For example, attention is a useful construct in explaining several associative learning phenomena. When
one cue ¢ is paired with outcome o on each trial, the resulting ¢;-o association is stronger than ¢;-o when
two simultaneous cues {qi1, ¢2} predict o during training; thus, ¢, is said to overshadow ¢; (Pavlov, ).
A reasonable way to explain overshadowing is that attention is split between the two cues, and thus the
associations ¢-o and ¢s-0 grow more slowly than when ¢; appears alone. Attention is also used to explain
the blocking effect (Kamin, ), which can be induced using a design with two training stages. In the early
stage, cue q; is repeatedly paired with outcome o, and in the late stage q; and ¢» appear jointly preceding o.
The association between ¢ and o is found to be much weaker than when only the late stage occurs. Thus ¢
has been blocked by ¢;’s earlier association with o—with much the same effect as a mutual exclusivity bias
preventing learners from mapping a second label (¢2) to a known object (0). Learning models, updating
knowledge trial-to-trial, account for blocking using selective attention to ¢;: since ¢; already predicts o, there
is no need to strengthen ¢s-o (e.g., Rescorla & Wagner, ; Pearce & Hall, ). Kachergis ( ) shows
that highlighting, another associative learning effect explained with attention (Kruschke, ; Kruschke,

), is also observed in a word-learning context, and can be accounted for using an associative word-learning
model with attentional biases. This work is explained in detail in Chapter 2 of my thesis.

Vlach ( ) links word-learning to memory, showing that fast-mapped words show the same pattern of
forgetting as other memorized items. Moreover, recent work has found that children show a 1-to-1 bias in
domains other than language: voices to faces (Moher, Feigenson, & Halberda, ) and actions to objects
(Childers & Tomasello, ), suggesting that ME—whatever its explanation—may not be a language-specific
constraint. Finally, both infants (Carey & Bartlett, ) and dogs (Pilley & Reid, ) have been shown
to fast map: given a new word, they will choose a new object over an object with a known label, retaining
the mapping weeks later (see Bloom, ). Thus, fast mapping, a valuable tool for word learning which is
thought to rely upon language-specific principles such as the above, may instead be based on more general
abilities. In this thesis, I will explore various real-world factors that influence word-learning, and show that
domain-general mechanisms are sufficient to explain the bulk of the findings without necessitating language-
specific constraints.

Overview of Thesis Studies

Using a cross-situational word learning experiment, Chapter 2 investigates the double-edged blade of mutual
exclusivity, which can be leveraged to quickly infer novel word-object pairs if old pairs are present, but which
would, strictly applied, block the learning of non-1-to-1 mappings such as synonyms and homonyms. The
results show how the ME bias changes as a function of the strength of prior knowledge, and that it relaxes
in the face of greater evidence that mappings are not 1-to-1. I introduce an associative model that accounts
for the empirical results using competing familiarity and uncertainty biases—biases shown even by infants
(for an overview, see Hunter & Ames, ). The model learns trial-by-trial, word-by-word, distributing



attention (i.e., associative weight) among the objects that are present. The amount of attention given to
each word-object association on a trial is determined by the current strength of that association, as well
as the relative entropy of a word/object’s associates: both strong associations and stimuli with uncertain
associates (e.g., novel stimuli) demand more attention. Baseline models that operate solely on the familiarity
bias or solely on the uncertainty bias are provided to understand how the biases compete to produce the
inference-like behavior that is consistent with mutual exclusivity. This experiment was previously published
in Kachergis, Yu, and Shiffrin ( ), and later modeled in Kachergis, Yu, and Shiffrin ( ).

The proposed model assumes that learners do not attend equally to all possible word-object pairings
(i.e., store all co-occurrences). The model will naturally show a mutual exclusivity bias via competing
selective attention based on two factors: strengthening associations between words and objects that have co-
occurred previously, as well as attending to stimuli that have no strong associates (e.g., novel stimuli). These
competing familiarity and uncertainty biases allow the model to exhibit fast mapping, since a novel word-
novel object combination will demand more attention, and a novel word will only become weakly associated
with an already-known referent (Kachergis et al., ). For example, suppose word wy and object 01 have
appeared together and are thus somewhat associated, while w; and o7 are novel. Given a trial with both
pairs: {wy,01,wr7,07}, wi-01 demands more attention than wr-01, wi-07, or wy-o7, since wi-01 is stronger
than baseline. However, attention is also pulled individually to w7 and to o7, since both of these novel stimuli
have no strong associates. Uncertainty is measured by the entropy of each stimulus’ association strengths.
Because of the high joint uncertainty of w; and o7, more attention is given to the association wy-o7. Thus,
attention is mostly divided between wi-0; and wr-o7, although the other pairings will be strengthened a bit.

Formally, given n words and n objects to be learned over a series of trials, let M be an n word X n object
association matrix that is incrementally built during training. Cell M,, , will be the strength of association
between word w and object o. Strengths are subject to forgetting (i.e., general decay) but are augmented
by viewing the particular stimuli. Before the first trial, M is empty. On each training trial ¢, a subset S of
m word-object pairings appears. If there are any new words and objects are seen, new rows and columns
are first added. The initial values for these new rows and columns are %, a small constant (e.g., 0.01).

Association strengths are allowed to decay, and on each new trial a fixed amount of associative weight, x,
is distributed among the associations between words and objects, and added to the strengths. The rule used
to distribute x (i.e., attention) balances a preference for attending to unknown stimuli with a preference for
strengthening already-strong associations. When a word and referent are repeated, extra attention (i.e., x)
is given to this pair—a bias for prior knowledge. Pairs of stimuli with no or weak associates also attract
attention, whereas pairings between uncertain objects and known words, or vice-versa, do not attract much
attention. To capture stimulus uncertainty, strength is allocated using entropy (H ), a measure of uncertainty
that is 0 when the outcome of a variable is certain (e.g., a word appears with one object, and has never
appeared with any other object), and maximal (logzn) when all of the n possible object (or word) associations
are equally likely (e.g., when a stimulus has not been observed before, or if a stimulus were to appear with
every other stimulus equally). In the model, on each trial the entropy of each word (and object) is calculated
from the normalized row (column) vector of associations for that word (object), p(M,, -), as follows:

H(w) == p(My;) - log(p(My,:))
=1

The update rule for adjusting and allocating strengths for the stimuli presented on a given trial is:
x - eNH@THE) L Ap
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In this equation, « is a parameter governing forgetting, x is the weight being distributed, and A is a
scaling parameter governing differential weighting of uncertainty (H(-); roughly novelty) and prior knowledge

Mw,o = aMw,o +




(M,y,o; familiarity). As X increases, the weight of uncertainty (i.e., the exponentiated entropy term, which
includes both the word and object’s association entropies) increases relative to familiarity. The denominator
normalizes the numerator so that exactly x associative weight is distributed among the potential associations
on the trial. For stimuli not on a trial, only forgetting operates. After training and prior to test, a small
amount of noise (¢ = .01 here) is added to M. At test the model chooses an associated referent for each word
from the m alternatives in proportion to their strengths to the word.

The new associative model word-learning is contrasted with the classic Rescorla and Wagner ( ) model
of associative learning, showing that the prediction-based error correction mechanism of the latter does not
match my empirical data. I discuss how word learning can be thought of as classic associative learning with
multiple cues (i.e., objects) and outcomes (words). Grounding the study of language acquisition in associative
learning mechanisms by adapting and applying these models to word-learning bridges two areas of research
that are often thought of separately. I also compare the proposed model to other recent models of cross-
situational word learning, showing that this model produces both inference-like behavior typically exhibited
by rule- and logic-based models (e.g., Siskind, ), as well as trial-order effects that humans demonstrate,
but which some models cannot show (e.g., Frank et al., ). Finally, Chapter 2 includes an experiment
demonstrating that an attentional associative learning effect also occurs in a cross-situational word-learning
context, further suggesting that domain-general mechanisms may be sufficient to explain a variety of language
learning behaviors. This experiment was published and modeled in Kachergis ( ). Despite its success at
explaining away some language-specific constraints, a domain-general associative account is not satisfactory
to all language acquisition researchers.

Another proposed process for word learning is hypothesis testing, which assumes that learners eliminate
incorrect word-referent mappings from the hypothesis space using a combination of observations and logical
constraints. This approach is used in the formal analysis of language acquisition (e.g., Gold, ; Pinker,

), and can be seen to stem from logic-based approaches to human concept learning (Bruner, Goodnow,
& Austin, ) and a long line of inferential methods in the philosophy of science. Many developmental
theories of language acquisition are built upon a rationale of hypothesis testing (e.g., Carey, ; Clark,

). One intuition that seems common among these approaches is that the world and perhaps the language
environment are far too complex (cf. Quine, ) for learners to be able to store, track, and update a
multitude of associations between words and referents (e.g., Medina, Snedeker, Trueswell, & Gleitman, ).
In Chapter 3, I address the question of whether a simple hypothesis-based model built upon the assumptions
of Medina et al. ( ) can account for individual word-learning trajectories as well as graded associations.
I measured word-learning trajectories over four blocks of the same cross-situational training. Individuals’
trajectories from this experiment were used to investigate the flexibility of two models: the associative model
proposed in Chapter 2, and a verbal model proposed by Medina et al. ( ) that posits people store only a
single hypothesized object for each word, and do not remember other possible associates. I found that the
model derived from the assumptions in Medina et al. ( ) is not capable of creating the range of learning
trajectories shown by individuals, whereas the associative model is. This work was published in Kachergis,
Yu, and Shiffrin ( ).

Chapter 4 examines and models the effects of frequency and contextual diversity in cross-situational word
learning. Word frequency is known to vary in the real world (Zipf, ), and children typically acquire higher
frequency words earlier (Huttenlocher, Haight, Bryk, Seltzeer, & Lyons, ). I investigate the effects of
allowing some word-object pairs to appear more often than others. Results show that frequent word-referent
pairs are often—but not always—learned better, and also boost learning of low frequency pairs. This superior
learning for vocabularies with heterogeneous frequency may result from learning frequent pairs first, and
leveraging this knowledge in later trials to learn low frequency pairs. However, contextual diversity — the
number of other pairs a given pair appears with — is naturally confounded with frequency, and presents
an alternative explanation (see also Hills, Maouene, Riordan, & Smith, ). I manipulate three critical
factors in cross-situational learning: frequency, contextual diversity, and within-trial ambiguity (i.e., the



number of pairs per trial). While greater frequency and contextual diversity are separately correlated with
performance, they also interact. Specifically, when infrequent pairs are given greater contextual diversity,
especially mixed with high frequency pairs, learning increases for these pairs, with little or no detriment to the
high frequency pairs. The highest learning performance observed was in conditions with varied frequency and
high contextual diversity, in which learners likely used the high-frequency pairs, learned early in training, to
quickly boostrap the low frequency pairs late in training. The familiarity- and uncertainty-biased associative
model naturally produces such bootstrapping via an attention shift to the infrequent (uncertain) stimuli once
the frequent (familiar) pairs are well-known. Once again, inference-like behavior is accomplished using simple
biases that use only the current state of knowledge. I also show that the associative model outperforms the
recent incremental probabilistic model (Fazly, Alishahi, & Stevenson, ; Fazly, Ahmadi-Fakhr, Alishahi,
& Stevenson, , ). Moreover, the associative model grants additional insight into the timecourse of
learning, where we see how early learning of high-frequency pairs bootstraps late learning of low-frequency
pairs. The experiments in Chapter 4 were published in Kachergis et al. ( ), and a manuscript with the
modeling portion is in preparation.

Chapter 5 relaxes the assumption that learners are passive observers, simply absorbing whatever stimuli
are provided. Learners in the world are not completely passive, but can affect how their environment
is structured by moving their heads, eyes, and nearby objects. These actions can indicate attention to
a language teacher, who may then be more likely to name the attended objects. Thus, I allow learners to
actively choose which objects they would like to see named on the next trial. Learners control when to repeat
pairs, when to stop experiencing pairs that they are confident they already know, and when to attempt to
learn more pairs. This gives us a glimpse of their preferred strategies and rate of learning, and can be
quite diagnostic for model selection (e.g., Kruschke, ). For example, since the model I propose assumes
learners have access to prior knowledge as well as uncertainty, it predicts that active learners will perform
better than passive learners. Finding that active learning produces superior performance, I investigate the
types and range of strategies used by learners, and try to infer system constraints (e.g., working memory)
as well as individual differences. I propose and test a working memory extension to the familiarity- and
uncertainty-biased associative model that is used throughout this thesis.

I found that all learners preferred to repeat at least one pair from trial-to-trial, on average. Repeating
one pair allows the learner to infer that the repeated object goes with the repeated word using working
memory, and also reduces the number of associations to be considered among unrepeated stimuli. However,
one group of learners preferred to repeat more than one pair, on average, indicative of a more complex set
of strategies. Overall, this group showed higher learning than the cluster of learners repeating only a single
pair. Extending the associative model with working memory mechanism, I found individual differences in
attention to repeated/unrepeated items that may indicate a variety of strategies deserving of further study.

Chapter 6 summarizes the work presented here, situates it in the broader context of language acquisition,
and discusses its limitations and possible future extensions. Overall, in this thesis I argued that a wide
range of human cross-situational learning behaviors can be captured by a domain-general associative model,
without recourse to language-specific principles or constraints.

Conclusion

This thesis proposed a simple associative model for learning the intended word-object mappings from a
series of scenes, each of which contain multiple words and objects. The proposed model uses domain-
general biases for uncertainty and familiarity, which are two fundamental psychological aspects of stimuli
that have been previously implicated in directing infant and adult attention. I have linked word-learning
to associative learning, showing that an attentional associative learning effect occurs in a word-learning
context. I have shown that the proposed associative model is better than a single-hypothesis model at
accounting for individual learning trajectories, and can naturally account for the effects and interactions



of frequency and contextual diversity better than other current models. Finally, using the proposed model
I investigated and evaluated what strategies people use in active cross-situational learning, finding that
immediately repeating more than one pair is beneficial. In summary, I have proposed a model of cross-
situational learning that accounts for a wide variety of human word-learning behaviors, including mutual
exclusivity and semantic bootstrapping and other results that stem from varying factors known to vary
in the natural language environment. This simple, intuitive model is both robust and extensible, and the
explanations and predictions it offers may prove useful in language acquisition research as well as education.

The proposed model adaptively allocates attention trial-by-trial to pairings based on both entropy (i.e.,
uncertainty) and prior knowledge. Built upon a simple associative mechanism, this process model captures
the dynamic feedback loop between attention and learning: internal learning states drive attention to certain
pairs, and attention on these pairs in turn strengthens associations between those pairs (leaving unattended
pairs relatively weak), updating internal learning states which will again drive attention in subsequent

learning. Other proposed models of word learning, including the Frank et al. ( ) Bayesian model and the
(Yu, ) machine translation model are batch learners: they are unaffected by trial order, which has been
shown to affect cross-situational word learning (e.g., Kachergis et al., ).

Thus, the contribution of the proposed model is to incorporate two attention mechanisms—biases for
prior knowledge and uncertainty—and show how they jointly control statistical learners’ attention in real-
time learning. Note that these biases are also present in infants, who show a familiarity preference after
brief exposure to a stimulus, but a preference for novel stimuli after longer exposure (for an overview, see
Hunter & Ames, ). A recent infant study provides evidence that novelty plays an important role in
early word learning (Mather & Plunkett, ). These factors cause our model to show a strong, early ME
bias—consistent with children’s ability to fast-map (Markman & Wachtel, )—but allow this bias to
gradually relax as additional evidence for non 1-to-1 mappings accumulates. The model therefore displays
biases claimed to be important mechanisms for language acquisition (e.g., Golinkoff, Hirsh-Pasek, Bailey, &
Wegner, ) by formalizing the competition between attending to familiar associations and attending to
stimuli with uncertain (i.e., high entropy) associates. Thus, I have demonstrated that an associative process
model with attention can successfully explain how early adaptive biases may arise from simple mechanisms
and still yield general learning in the long run, as do human learners. This approach attributes developmental
changes in word learning to general cognitive mechanisms (a view shared by others—e.g., Smith ( ))-
The success of the model suggests a learning system that does not learn independent associations between
individual words and referents, but one that rather learns a system of associations. In such a system, a single
word-referent pairing is correlated with all the other pairings that share the same word and all the other
pairings that share the same referent, which are in turn correlated with more word-referent pairs—an entire
system of them. I contend that the improvement in statistical word learning is in part due to the recruitment
of accumulated latent lexical knowledge, used to learn subsequently appearing pairs. The associative model,
which learns associations between all co-occurring words and objects incrementally, leverages prior knowledge
and uncertainty to accomplish this, and also accounts for data from associative learning experiments.

By linking word learning to associative learning, as suggested by Smith ( ), we may find that the
plurality of overlapping language-specific constraints (e.g., ME, N3C, the principle of contrast, and the fill-
the-gap bias) are unnecessary to explain many language learning behaviors. Instead, I predict that a more
parsimonious explanation will emerge, built upon a foundation of domain-general mechanisms formalized in
computational models. Language-specific principles and constraints may yet exist, but we should first see
how far more universal mechanisms take us.

The contributions of this thesis are interdisciplinary, for I address theoretical debates in linguistics and
psychology using models that are of interest to computer science and that have application in education.
The diverse techniques used in this thesis—from psychology experiments to computational modeling—are used
to address theoretical issues relevant to many cognitive scientists. I believe my thesis is therefore a good
candidate for the Robert J. Glushko Dissertation Prize. Thank you for your consideration.
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