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Introduction 

Working memory allows us to actively work with and manipulate information. Moreover, 
individual differences in working memory capacity predict general intelligence, reading 
comprehension and ability to learn (Baddeley, 1986; Baddeley, 2000). However, there seem to 
be striking limits on working memory capacity: in visual working memory tasks, observers have 
difficulty remembering the color of five circles for a second or two (Luck & Vogel, 1997), in 
spite of the fact that they can easily perceive all of the colors when the display is present. Many 
theories have been proposed to explain these severe capacity limits: for example, it has been 
proposed that our capacity is slot-based and limited to representing only 3 or 4 integrated objects 
(Luck & Vogel, 1997), or that we have separate limits of 3 or 4 slots for each visual feature, such 
as colors and orientations (Wheeler & Treisman, 2002; Xu, 2002).  

My dissertation proposes a new model of visual working memory based on the interaction of 
structured, hierarchical representations rather than independent representations of individual 
items, chunks or slots. Using psychophysical data from human observers combined with 
computational modeling, I provide evidence that observers represent each visual display with at 
least three different levels of abstraction: independent visual features, integrated objects, and 
ensemble or summary statistics across sets of items (Chapter 1). Furthermore, I show that the 
levels are not independent, but instead interact with each other to form a combined memory 
representation (Chapter 2), and I provide a computational model that formalizes how individual 
item representations might interact with the representation of summary statistics (Chapter 3). In 
addition, I demonstrate that statistical learning can influence our representations of individual 
items in working memory displays (Chapter 4), resulting in another form of structured memory 
representations. I formalize such learning using information theory, showing that working 
memory limits are best characterized as information limits, not limits on numbers of objects or 
features. Taken together, my thesis demonstrates that working memory capacity cannot be 
understood in terms of the number of items, chunks or objects remembered. In order to 
understand the capacity limits of working memory, we need to take into account the underlying 
hierarchical structure of our memory representations. 

Throughout graduate school my research has had an interdisciplinary focus, involving the 
intersection of vision science, computer vision and human learning and memory.  I have used 
methods ranging from psychophysics (Brady & Oliva, submitted; Brady & Alvarez, 2011), to 
cognitive paradigms designed to tap episodic memory (Brady et al. 2008; Konkle, Brady et al. 



2010a, 2010b), to functional neuroimaging of visual scene and object recognition (Park, Brady et 
al. 2011). I have applied computational techniques ranging from connectionist modeling (Brady 
& Chun, 2007) to hierarchical Bayes (Brady & Alvarez, 2011; Brady & Tenenbaum, 2010) to 
information theory (Brady et al. 2009). In addition, I’ve sought a range of interdisciplinary 
collaborations, for example, collaborating in applying machine learning techniques to research at 
the intersection of animal cognition and music cognition (Schachner, Brady et al. 2009).  

My thesis represents this interdisciplinary focus well. The three main components of my thesis 
involve collaborations not only with my advisor, Dr. Aude Oliva, but also Dr. Josh Tenenbaum 
at MIT, in work formalizing a structured model of visual working memory; and Dr. George 
Alvarez at Harvard, in work using psychophysics to examine the content of working memory 
representations. The contributions of my thesis are also interdisciplinary: It uses tools from 
machine learning, information theory and Bayesian statistics to describe phenomena in human 
cognition and memory, and it proposes a theoretical picture of working memory capacity and 
architecture that is both formally specified as well as strongly related to the known 
neuroscientific basis of visual representation.  
 

Chapter 1: Thesis Background / Structured Representations in Visual Working Memory 
(published as Brady, Konkle & Alvarez, 2011) 

Estimates of memory capacity must be expressed with some unit; however, the appropriate unit 
for memory capacity depends upon how information is represented. Since George Miller's (1956) 
seminal paper claiming a limit of 7 +/- 2 chunks as the capacity of working memory, a 
significant amount of work has attempted to determine the units of storage in working memory. 
In the domain of verbal memory, for example, debate has flourished about the extent to which 
working memory capacity is limited by storing a fixed number of chunks vs. time-based decay 
(Baddeley, 1986; Cowan 2005; Cowan & AuBuchon, 2008). In visual working memory, this  

 
Figure 1. Possible memory representations for a visual working memory display. (a) A display of oriented and 
colored items to remember. (b) Potential memory representations for the display in (a). The units of memory do not 
appear to be integrated bound objects, or completely independent feature representations. Instead, we propose that 
they be characterized as hierarchical feature-bundles, which have both object-level and feature-level properties. 

 



debate has focused largely on the issue of whether separate visual features (color, orientation, 
size) are stored in independent “buffers,” each with their own capacity limitations (e.g., 
Magnussen, Greenlee & Thomas, 1996), or whether visual working memory operates over 
integrated object representations (Luck & Vogel, 1997; Vogel, Woodman & Luck, 2001). In 
addition to providing an overview of the background literature on visual working memory, 
Chapter 1 of my thesis proposes a novel theory for how individual items are represented in 
working memory: the hierarchically structured feature-bundle. 

This model resolves an apparent contradiction in the existing literature, which had suggested 
limits at the level of both integrated objects and at the level of separate features. For example, 
Luck and Vogel (1997) found that observers’ performance on a change detection task was 
identical whether they had to remember only one feature per object (orientation or color), two 
features per object (both color and orientation), or even four features per object (color, size, 
orientation and shape), suggesting that the limitation on memory was how many objects can be 
stored, rather than how many features composed those objects. By contrast, when Fougnie, 
Asplund and Marois (2010) examined observers’ representations of multi-feature objects 
(oriented triangles of different colors), they found that even within a single simple object, 
remembering more features results in significant costs in the fidelity of each feature 
representation. In other words, remembering the color and orientation of each triangle resulted in 
a less precise representation of both the color and orientation than remembering only a single 
dimension. These data provide strong evidence against slot-based models, since more 
information about an already-represented object cannot always be encoded without cost (e.g., 
Luck and Vogel, 1997); but at the same time argue against the idea of entirely separate memory 
capacities for each feature dimension. 

So what is the basic unit of representation in visual working memory – visual features or 
integrated objects? No existing model captures all of the relevant data on the storage of objects 
and features in working memory. We propose that the initial encoding process is object-based (or 
location-based), but that the “unit” of visual working memory is a hierarchically-structured 
feature-bundle (Figure 1). This “unit” is composed of an integrated object representation at the 
top level, and low-level feature representations at the bottom level, with these representations 
hierarchically organized in a manner that parallels the hierarchical organization of the visual 
system. Thus, a hierarchical feature-bundle has the properties of independent feature stores at the 
lower level, and the properties of integrated objects at a higher level. This structured 
representation accounts for the previous apparent contradiction: Because there is some 
independence between lower-level features, it is possible to modulate the fidelity of features 
independently, and even to forget features independently. On the other hand, encoding a new 
hierarchical feature-bundle might come with an “overhead cost” that could explain the object-
based benefits on encoding. On this view, remembering any feature from a new object would 
require instantiating a new hierarchical feature-bundle, which would be more costly than simply 
encoding new features into an existing bundle. 



This proposal for the structure of memory representations is consistent with the full pattern of 
evidence from the visual working memory literature (see Chapter 1) and is consistent with 
evidence showing a specific impairment in object-based working memory when attention is 
withdrawn from items (e.g., binding failures: Fougnie & Marois, 2009; Wheeler & Treisman, 
2002).  

It is important to note that our proposed model is not compatible with a straightforward item-
based or chunk-based model of working memory capacity. A key part of such proposals (e.g., 
Cowan, 2001; Cowan et al. 2004) is that memory capacity is limited only by the number of 
chunks encoded, not taking into account the information within the chunks (such as features). 
Consequently, chunk-based models are not compatible with evidence showing that there are 
limits simultaneously at the level of objects and the level of features (e.g., Fougnie et al. 2010). 
Any limit in terms of numbers of items or chunks would not capture the hierarchically structured 
content of the representations maintained in memory. 
 

Chapter 2: Hierarchical encoding in visual working memory: Ensemble statistics bias 
memory for individual items (published as Brady & Alvarez, 2011, Psychological Science) 

In addition to storing information about individual items and features, observers can quickly and 
accurately compute ensemble statistics about a display, like the mean size of the items (Ariely, 
2001; Chong & Treisman, 2003), mean facial expression (Haberman & Whitney, 2009), mean 
orientation (Parkes et al. 2001), mean location (Alvarez & Oliva, 2008), and even higher-level 
spatial layout statistics (Alvarez & Oliva, 2009). However, little work has explored how these 
statistics are used, and in particular, whether the encoding of these higher-order statistics might 
play a role in how we represent the individual items from such displays in memory. 
 
Nearly all studies of visual working memory use displays consisting of simple stimuli in which 
the items are chosen randomly. These displays are, as best as possible, prevented from having 
any overarching structure or gist. Thus, influential models of visual working memory tend to 
treat each item as an independent unit and assume that items do not influence one another's 
representation (Alvarez & Cavanagh, 2004; Zhang & Luck, 2008).  
 
Contrary to the assumptions of previous models of visual working memory, we propose that 
items are not represented independently, even in working memory displays: Instead, ensemble 
statistics allow observers to encode working memory displays more efficiently. Paralleling how 
people encode real scenes (Lampinen, Copeland, Neuschatz, 2001; Oliva, 2005), observers might 
encode the 'gist' of simple working memory displays (ensemble statistics like mean size) in 
addition to information about specific items (their individual size). Such hierarchical encoding 
would allow observers to represent information about every item in the display simultaneously, 



significantly improving the fidelity of their memory representations compared to encoding only 
3-4 individual items. 
 
To test this hypothesis, we gave observers a memory task in which they had to remember the size 
of multiple red and blue dots (Figure 2). After each trial, observers were tested on the size of a 
single dot using the method of adjustment (a continuous report procedure). We asked whether 
the ensemble statistics of a display would bias memory for individual items in this task. We 
hypothesized that on displays with small red dots and large blue dots, observers would tend to 
report the size of a particular dot as larger when it was blue than when it was red. This size bias 
would suggest that observers had taken into account the mean size of the set of same-colored 
items in addition to the size of the individual item when reporting its size. 
 
To allow a direct test for this mean set bias, we generated displays in matched pairs. Thus, we 
were able to compare reported size for an identical item when it was one color with the reported 
size when it was another color (see Figure 3).  
 
We found that observers reported a size on average 1.11 times greater (SEM: +/-0.03) on the half 
of the displays with larger same-colored dots. This ratio was significantly greater than 1.0 
(t(20)=4.17; p=0.0004). Furthermore, a series of control experiments revealed that: this bias was 
present on each individual trial; there was a bias not only towards the mean size of the same 
colored items but also towards the mean size of all of the items on the display; and the data was 
compatible with a simple hierarchical Bayesian model where information is stored at multiple 
levels of abstraction and integrated to form a final memory representation. 
 
Thus, we find that observers are biased by the ensemble statistics of the display when 
representing items in visual working memory. Thus, despite the active maintenance processes 
involved in visual working memory, it appears to be susceptible to the very same hallmarks of 
constructive memory that are typical of retrieval from long-term memory and scene recognition 

 
Figure 2. An example pair of matched displays from Chapter 2. Observers had to remember the size of the red and 
blue dots and ignore the green dots. After each trial they were tested on the size of a single dot using the method of 
adjustment (a continuous report procedure). 

 



(Bartlett, 1932; Lampinen, Copeland, Neuschatz, 2001); and working memory representations 
must be thought of as based on a structured representation consisting of both ensemble and 
individual item information. 
 

Chapter 3: A probabilistic model of visual working memory: Incorporating higher-order 
regularities into working memory capacity estimates (parts published as Brady & 
Tenenbaum, 2010, CogSci proceedings) 

The standard way of reporting performance in visual working memory tasks is to report the 
number of colors remembered (“Cowan’s K”). These values are calculated using a particular 
model of change detection (a 'slot model'), which assumes that the decline in performance when 
more colors must be remembered is caused solely by a hard limit in the number of items that can 
be remembered (Cowan, 2001; Pashler, 1988). Such estimates thus assume complete 
independence between the items.   

Nearly all visual working memory papers report such values, often without considering whether 
the model that underlies them is an accurate description of observers’ representations of those 
stimuli. Thus, even in displays where observers perform grouping or encode summary statistics 
in addition to specific items, many researchers continue to report how many items observers can 
remember (K values) using the standard formula in which each item is treated as an independent 
unit (e.g., Brady, Konkle, Alvarez, 2009; Xu & Chun, 2007). This results in ‘K’ values that vary 
by condition, which would indicate a working memory capacity that is not fixed. In these cases, 
the model being used to compute capacity is almost certainly incorrect – observers are not 
encoding items independently.   

 

Figure 3.  (A) Schematic illustration of calculating bias from a pair of matched displays. In this example, the 
blue dots were larger than the red dots on average. We then measured whether observers reported different 
sizes for the tested dot when it was red versus when it was blue (the dot was in fact the same size in both 
presentations). (B) The bias observed in Experiment 1, indicative of observers using ensemble statistics. 



In this chapter we reformulate change detection as probabilistic inference in a generative model. 
We first formalize how observers encode an initial study display, and then we model the change 
detection task as an inference from the information in the test display and the information in 
memory to a decision about the initial display, and whether a change occurred. Modeling change 
detection in this Bayesian framework allows us to use more complex and structured knowledge 
in our memory encoding model (e.g., Tenenbaum, Griffiths & Kemp, 2006), and make 
predictions about memory capacity when items are non-independent or where summary statistics 
are encoded in addition to specific items. 

Across a series of experiments, we find that observers are much more successful at detecting 
changes to displays containing spatial patterns than would be expected if they were remembering 
only 3-4 individual items from each display. Furthermore, we find that observers are highly 
reliable in which particular changes they find easiest and hardest to detect. Using our Bayesian 
model, we formalize a model of observers’ memory representations: a summary-based 
representation, where observers encode both a spatial summary of the display (e.g. “items tend to 
be the same color as their horizontal neighbors”) plus specific outlier items, combined with a 
simple perceptual grouping model. Using this change detection model, we can explain nearly all 
of the variance in change detection performance in patterned displays as well as in simple 
displays of colored dots. 

Thus, modeling more structured memory representations allows us to successfully understand 
what information observers represent in visual working memory, and predict for the first time 
what particular working memory displays will be easy or difficult for observers to remember. 

Chapter 4: Compression in visual working memory: Using statistical regularities to form 
more efficient memory representations (published as Brady, Konkle, & Alvarez, 2009, Journal 
of Experimental Psychology: General) 

Observers are highly sensitive to statistical regularities in the world, and this sensitivity has been 
used to explain effects from speech segmentation to the emergence of visual objects (Saffran, 
Aslin & Newport, 1996; Turk-Browne, Isola, Scholl, & Treat, 2008). However, such regularities 
also provide an opportunity for memory systems to form more efficient representations by 
eliminating redundancies. According to information theory, if the input contains statistical 
structure and regularities, then each piece of information we encode limits the likely possibilities 
for the remaining information (e.g. given a ‘q’, the next letter is likely to be ‘u’). This makes it 
possible to encode more items in less space (Cover & Thomas, 1991).  

We asked whether human observers use such regularities in working memory in a way that is 
compatible with an information theoretic compression analysis. To do so, we combined a visual 
statistical learning paradigm with a working memory paradigm. On each trial, 8 colors were 
presented, grouped in pairs (see Figure 4). After a delay, one location was cued and observers 
reported the color that had been at the cued location. For one group of observers (the “uniform 



group”), the colors were randomly paired from trial to trial. For a separate group of observers 
(the “patterned group”), the colors were paired such that 80% of the time certain colors co-
occurred (e.g., red with yellow).  

We found that, over the course of the experiment, the number of colors remembered by the 
patterned group doubled from 3 to 6, but remained constant for the uniform group at about 3 (see 
Figure 5b). Additional analyses ruled out the possibility that the improved performance for the 
patterned group was simply due to a guessing strategy. Instead, it appeared that observers in the 
patterned group learned the regularities and were able to use them to store more colors in 
working memory. 

To formalize the hypothesis that learning visual statistical regularities enables efficient 
compression, we performed an information theoretic analysis of the data. First, we modeled the  

 
 Figure 4. (A) A sample trial. (B) Results of Experiment 1. In the patterned condition some colors appeared on the 
same object more frequently than others. Observers’ performance increased over time as they learned these 
regularities. Capacity (K) is the number of colors observers successfully recalled. (C) The size of memory estimated 
in bits, rather than number of objects. Note that the amount of information remembered is constant, even though the 
number of colors remembered increases.  

 



learning of the color regularities based on the number of times observers saw each pair of colors 
using a Bayesian learning model (a Dirichlet-Multinomial model). Second, we assessed how 
these learned statistics translate into representations in bits, using Huffman coding (Huffman, 
1952). The Huffman codes provide a measure of the average number of bits per color, and the 
memory performance gives a measure in number of colors remembered.  Thus, if we multiply 
the average size of the Huffman code times the number of items remembered, we get an estimate 
of the number of bits of information a given set of observers recalled in a given block (Figure 
4c). Both groups of observers in the uniform condition and the patterned condition show roughly 
the same total capacity in bits, despite the difference in the number of items remembered 
between the groups. This analysis suggests that observers in the patterned group were able to use 
an optimal encoding scheme, taking advantage of the regularities between items to compress 
information. Importantly, this modeling approach provides a formal framework that makes 
specific, testable predictions for how many items can be stored in working memory, given the 
particular set of regularities encountered, and provides a formal specification of when observers 
will and will not successfully form ‘chunks’ from a display. 

Almost all real-world items are associated with other objects in the environment, and we 
frequently have long-term knowledge that allows us to constrain the information we need to 
remember. Thus, taking into account our prior knowledge about regularities between items is 
crucial to determining the structure of our memory representations.  

Conclusion 

Taken together, my thesis demonstrates that working memory capacity cannot be understood in 
terms of the number of items, chunks or objects that can be remembered. Instead, we need to 
study working memory capacity by taking into account the hierarchical structure of our memory 

 
Figure 6. The proposed structure of memory representations in both simple and real-world displays. Information is 
represented both at the item level (as a hierarchical feature-bundle) and across individual items at the ensemble 
level, possibly in parallel but interacting processing streams. 



representations. I have shown that observers simultaneously represent visual displays with at 
least three different levels of abstraction: independent visual features, integrated objects, and 
ensemble or summary statistics across sets of items, and that these levels of representation 
interact to form the memory representation of the entire display. 

My thesis draws inspiration not only from computer vision and machine learning, but also from 
the neuroscience of the visual system, including the basic visual hierarchy (e.g., Riesenhuber & 
Poggio, 1999; Ullman, 2007) and the distinction in the behavioral and neuroimaging literatures 
between object processing and scene processing regions (e.g., Epstein & Kanwisher, 1998; Grill-
Spector et al. 2001; Torralba et al. 2006; Oliva, 2005), including the known involvement of 
scene processing regions in representing summary statistics of sets of objects (e.g., Cant & Xu, 
2010). Combined with the fact that improved understanding of working memory capacity is 
relevant to a broad range of research areas, I believe that my thesis aligns well with the principles 
of the Robert J. Glushko Dissertation Prize in Cognitive Science. 
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